Publications

29. Maksimovic I, Finkin-Groner E, Fukase Y, Zheng Q, Sun S, Michino M, Huggins DJ, Myers RW, David Y. Deglycase-activity oriented screening to identify DJ-1 inhibitors. RSC Med Chem. 2021 Jun 2;12(7):1232-1238. doi: 10.1039/d1md00062d. eCollection 2021 Jul 21

28. Wu A., Zhi J., Tian T., Cihan A., Cevher MA., Liu Z., David Y., Muir TW., Roeder RG., Yu M. DOT1L complex regulates transcriptional initiation in human erythroleukemic cells. Proc Natl Acad Sci U S A. 2021 Jul 6;118(27):e2106148118. doi: 10.1073/pnas.2106148118.

27. Faulkner S., Maksimovic I. and David Y. A chemical field guide to histone nonenzymatic modifications. Current Opinion in Chemical Biology, 2021 Jun 19;63:180-187. doi: 10.1016/j.cbpa.2021.05.002.

26. Maksimovic I. and David Y. Non-enzymatic Covalent Modifications as a New Chapter in the Histone code. Trends in Biochemical Sciences, May 5:S0968-0004(21)00070-0. doi: 10.1016/j.tibs.2021.04.004. Online ahead of print.

25. Yusufova, N., Kloetgen, A., Teater, M. et al. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature, 2021 Jan;589(7841):299-305. doi: 10.1038/s41586-020-3017-y. PMID: 33299181

24. Willcockson, M.A., Healton, S.E., Weiss, C.N. et al. H1 histones control the epigenetic landscape by local chromatin compaction. Nature, 2021 Jan;589(7841):293-298. doi: 10.1038/s41586-020-3032-z. PMID: 33299182

23. Zheng Q, Osunsade A, David Y. Protein arginine deiminase 4 antagonizes methylglyoxal-induced histone glycation. Nat. Commun. 11, 3241. 2020 Jun 26;11(1):3241. doi: 10.1038/s41467-020-17066-y. PMID: 32591537

22. Maksimovic I, Zheng Q, Trujillo MN, Galligan JJ, David Y. An azidoribose probe to track ketoamine adducts in histone ribose glycation. J. Am. Chem. Soc. 2020, 142, 22, 9999–10007.

21. Zheng Q, Maksimovic I, Upad A, David Y. Non-enzymatic covalent modifications: a new link between metabolism and epigenetics. Protein & Cell, 2020, 11, 401-416.

  • Highlighted as a Cover Story.

  • Featured in Today's Science Sparks on the library website of MSKCC (June 12th, 2020).

20. Prescott NA, David Y. In vivo histone labeling using ultrafast trans-splicing inteins. Methods Mol. Biol., 2020, 2133, 201-219.

19. Zheng Q, Maksimovic I, Upad A, Guber D, David Y. Synthesis of an alkynyl methylglyoxal probe to investigate nonenzymatic histone glycation. J. Org. Chem., 2020, 85, 1691-1697.

  • Part of the Modern Peptide and Protein Chemistry special issue.

18. Prescott NA, Bram Y, Schwartz RE, David Y. Targeting hepatitis B virus covalently closed circular DNA and hepatitis B virus X protein: Recent advances and new approaches. ACS Infect. Dis., 2019, 5, 1657-1667.

17. Maksimovic I, Ray D, Zheng Q, David Y. Utilizing intein trans-splicing for in vivo generation of site-specifically modified proteins. Methods Enzymol., 2019, 626, 203-222.

16. Zheng Q, Omans ND, Leicher R, Osunsade A, Agustinus AS, Finkin-Groner E, D’Ambrosio H, Liu B, Chandarlapaty S, Liu S, David Y. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nat. Commun., 2019, 10, 1289.

15. Zheng Q, Prescott NA, Maksimovic I, David Y. (De)Toxifying the epigenetic code. Chem. Res. Toxicol., 2019, 32, 796-807.

  • Part of the Epigenetics in Toxicology special issue.

14. Osunsade A, Prescott NA, Hebert JM, Ray DM and David Y. A robust method for the purification and characterization of the human histone H1 variants. Biochemistry, 2019, 58, 171-176.

  • Part of Future of Biochemistry: The International Issue.

13. Oslund RC, Su X, Haugbro M, Kee JM, Esposito M, David Y, Wang B, Ge E, Perlman DH, Kang Y, Muir TW, Rabinowitz JD. Bisphosphoglycerate mutase controls serine pathway flux via 3-phosphoglycerate. Nat. Chem. Biol., 2017, 13, 1081-1087.

12. David Y, Muir TW. Emerging chemistry strategies for engineering native chromatin. J. Am. Chem. Soc., 2017, 139, 9090-9096.

11. Liszczak GP, Brown ZZ, Kim SH, Oslund RC, David Y, Muir TW. Genomic targeting of epigenetic probes using a chemically tailored Cas9 system. Proc. Natl. Acad. Sci. USA., 2017, 114, 681-686.

10. Holt M, David Y, Pollock S, Tang Z, Jeon J, Kim J, Roeder RG, Muir TW. Identification of a functional hotspot on ubiquitin required for stimulation of methyltransferase activity on chromatin. Proc. Natl. Acad. Sci. USA., 2015, 112, 10365-10370.

9. David Y, Vila-Perelló M, Verma S, Muir TW. Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nat. Chem. 2015, 7, 394-402.

  • Featured in Nature Methods Research Highlights: Doerr A, ‘Chemical Biology: Tinkering with chromatin’. Nature Methods. 2015 May:12, 491.

  • Featured in Nature Chemistry News and Views: Fischle W, Schwarzer D, Mootz HD. ‘Chemical biology: Chromatin chemistry goes cellular’. Nature Chemistry. 2015 May;7(5):371-3

  • Featured in EurekAlert AAAS, PhysOrg Science news (Chemistry), Science Newsline and others: Nguyen T. ‘Decoding the cell’s genetic filing system’.

8. Altun M, Walter TS, Kramer HB, Herr P, Iphöfer A, Boström J, David Y, Komsany A, Ternette N, Navon A, Stuart DI, Ren J, Kessler BM. The human otubain2-ubiquitin structure provides insights into the cleavage specificity of poly-ubiquitin-linkages. PLoS One, 2015, 10, e0115344.

7. Nguyen UT, Bittova L, Müller MM, Fierz B, David Y, Houck-Loomis B, Feng V, Dann GP, Muir TW. Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat. Methods, 2014, 11, 834-840.

6. Berko D, Herkon O, Braunstein I, Isakov E, David Y, Ziv T, Navon A, Stanhill A. Inherent asymmetry in the 26S proteasome is defined by the ubiquitin receptor RPN13. J. Bio. Chem., 2014, 289, 5609-5618.

5. Shahar-Pomerantz Y, Elbaz J, Kirenberg I, Reizel Y, David Y, Galiani D, Nevo N, Navon A, Dekel N. From ubiquitin-proteasomal degradation to CDK1 inactivation: Requirements for the first polar body extrusion in mouse oocytes. FASEB J., 2012, 26, 4495-4505.

4. David Y, Ternette N, Edelmann M, Ziv T, Gayer B, Sertchook R, Dadon Y, Kessler BM, Navon A. E3 ligases determine the ubiquitination site and chain type by enforcing specificity on E2 enzymes. J. Biol. Chem., 2011, 286, 44104-44115.

3. Shimshon L, Michaeli A, Hadar R, Nutt SL, David Y, Navon A, Waisman A, Tirosh B. SUMOylation of Blimp-1 promotes its proteasomal degradation. FEBS Lett., 2011, 585, 2405-2409.

2. David Y, Ziv T, Admon A, Navon A. The E2 ubiquitin conjugating enzymes direct polyubiquitination to preferred lysines. J. Biol. Chem., 2010, 285, 8595-8604.

1. Shtiegman K, Kochupurakkal BS, Zwang Y, Pines G, Starr A, Vexler A, Citri A, Katz M, Lavi S, Ben-Basat Y, Benjamin S, Corso S, Gan J, Yosef RB, Giordano S, Yarden Y. (2007) Defective ubiquitylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene, 2007, 26, 6968-6978.