Zheng Q, Maksimovic I, Upad A, Guber D, David Y. Synthesis of an alkynyl methylglyoxal probe to investigate nonenzymatic histone glycation. J. Org. Chem., 2020, DOI: 10.1021/acs.joc.9b02504.

  • Part of the Modern Peptide and Protein Chemistry special issue.

Zheng Q, Osunsade A, David Y. Protein arginine deiminase 4 antagonizes methylglyoxal-induced histone glycation. bioRxiv, 2019, DOI:

Maksimovic I, Ray D, Zheng Q, David Y. Utilizing intein trans-splicing for in vivo generation of site-specifically modified proteins. Methods Enzymol., 2019, 626, 203-222.

Zheng Q, Omans ND, Leicher R, Osunsade A, Agustinus AS, Finkin-Groner E, D’Ambrosio H, Liu B, Chandarlapaty S, Liu S, David Y. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nat. Commun., 2019, 10, 1289.

Zheng Q, Prescott NA, Maksimovic I, David Y. (De)Toxifying the epigenetic code. Chem. Res. Toxicol., 2019, 32, 796-807.

  • Part of the Epigenetics in Toxicology special issue.

Osunsade A, Prescott NA, Hebert JM, Ray DM and David Y. A robust method for the purification and characterization of the human histone H1 variants. Biochemistry, 2019, 58, 171-176.

  • Part of Future of Biochemistry: The International Issue.

Oslund RC, Su X, Haugbro M, Kee JM, Esposito M, David Y, Wang B, Ge E, Perlman DH, Kang Y, Muir TW, Rabinowitz JD. Bisphosphoglycerate mutase controls serine pathway flux via 3-phosphoglycerate. Nat. Chem. Biol., 2017, 13, 1081-1087.

David Y, Muir TW. Emerging chemistry strategies for engineering native chromatin. J. Am. Chem. Soc., 2017, 139, 9090-9096.

Liszczak GP, Brown ZZ, Kim SH, Oslund RC, David Y, Muir TW. Genomic targeting of epigenetic probes using a chemically tailored Cas9 system. Proc. Natl. Acad. Sci. USA., 2017, 114, 681-686.

Holt M, David Y, Pollock S, Tang Z, Jeon J, Kim J, Roeder RG, Muir TW. Identification of a functional hotspot on ubiquitin required for stimulation of methyltransferase activity on chromatin. Proc. Natl. Acad. Sci. USA., 2015, 112, 10365-10370.

David Y, Vila-Perelló M, Verma S, Muir TW. Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nat. Chem. 2015, 7, 394-402.

  • Featured in Nature Methods Research Highlights: Doerr A, ‘Chemical Biology: Tinkering with chromatin’. Nature Methods. 2015 May:12, 491.
  • Featured in Nature Chemistry News and Views: Fischle W, Schwarzer D, Mootz HD. ‘Chemical biology: Chromatin chemistry goes cellular’. Nature Chemistry. 2015 May;7(5):371-3
  • Featured in EurekAlert AAAS, PhysOrg Science news (Chemistry), Science Newsline and others: Nguyen T. ‘Decoding the cell’s genetic filing system’.

Altun M, Walter TS, Kramer HB, Herr P, Iphöfer A, Boström J, David Y, Komsany A, Ternette N, Navon A, Stuart DI, Ren J, Kessler BM. The human otubain2-ubiquitin structure provides insights into the cleavage specificity of poly-ubiquitin-linkages. PLoS One, 2015, 10, e0115344.

Nguyen UT, Bittova L, Müller MM, Fierz B, David Y, Houck-Loomis B, Feng V, Dann GP, Muir TW. Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat. Methods, 2014, 11, 834-840.

Berko D, Herkon O, Braunstein I, Isakov E, David Y, Ziv T, Navon A, Stanhill A. Inherent asymmetry in the 26S proteasome is defined by the ubiquitin receptor RPN13. J. Bio. Chem., 2014, 289, 5609-5618.

Shahar-Pomerantz Y, Elbaz J, Kirenberg I, Reizel Y, David Y, Galiani D, Nevo N, Navon A, Dekel N. From ubiquitin-proteasomal degradation to CDK1 inactivation: Requirements for the first polar body extrusion in mouse oocytes. FASEB J., 2012, 26, 4495-4505.

David Y, Ternette N, Edelmann M, Ziv T, Gayer B, Sertchook R, Dadon Y, Kessler BM, Navon A. E3 ligases determine the ubiquitination site and chain type by enforcing specificity on E2 enzymes. J. Biol. Chem., 2011, 286, 44104-44115.

Shimshon L, Michaeli A, Hadar R, Nutt SL, David Y, Navon A, Waisman A, Tirosh B. SUMOylation of Blimp-1 promotes its proteasomal degradation. FEBS Lett., 2011, 585, 2405-2409.

David Y, Ziv T, Admon A, Navon A. The E2 ubiquitin conjugating enzymes direct polyubiquitination to preferred lysines. J. Biol. Chem., 2010, 285, 8595-8604.

Shtiegman K, Kochupurakkal BS, Zwang Y, Pines G, Starr A, Vexler A, Citri A, Katz M, Lavi S, Ben-Basat Y, Benjamin S, Corso S, Gan J, Yosef RB, Giordano S, Yarden Y. (2007) Defective ubiquitylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene, 2007, 26, 6968-6978.